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Abstract 

RF voltage modulation at a finite number of discrete frequencies is described in a 

Hamiltonian resonance framework. The theory is applied to the problem of parasitic 

extraction of a fixed target beam from a high energy proton collider, using a bent ctystal as a 

thin “septum” with an effective width of about one micron. Three modes of employment of 

discrete resonances are proposed. First, a single relatively strong static “drive” resonance 

may be used to excite a test proton so that it will penetrate deeply into the channeling crystal. 

Second, a moderately strong “feed” resonance with a ramped modulation tune may be used to 

adiabatically trap protons near the edge of the beam core, and transport them to the drive 

resonance. Third, several weak resonances may be overlapped to create a chaotic amplitude 

band, either to transport protons to the drive resonance, or to provide a “pulse stretching” 

buffer between a feed resonance and the drive resonance. Extraction efficiency is semi- 

quantitatively described in terms of characteristic “penetration”, “depletion”, and “repetition” 

times. Simulations are used to quantitatively conftrm the fundamental results of the theory, 

and to show that a prototypical extraction scheme using all three modes promises good 

extraction performance. 

Introduction 

This paper describes aspects of the theory of discrete frequency RF voltage modulation 

in a hadron synchroaon. Reference is frequently made to the problem of slow extraction 

from a proton storage ring onto a crystal channeling “septum” inside the vacuum chamber. 

According to whether or not the reader is interested in this novel technique, he or she may 
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view these extraction discussions either as a primary motivation, or as a continuing 

illustrative example. In either case, a brief introduction to the crystal extraction problem is 

appropriate. 

The Supercollider Fixed Target experiment (SFT) proposes to extract fixed target beam 

parasitically from the Superconducting Super Collider (SSC), while colliding beam 

experiments are also in operation ‘-*-3. Although it is impossible to be completely parasitic, 

as is discussed below, it is not permissible to set the betatron tunes to arbitrary values, since 

this will disrupt collision conditions. Conventional slow extraction schemes4, using a 

horizontal tune close to i or f, are therefore not viable. Because of this, most attention has 

turned to manipulations of the radio frequency (RF) system which controls longitudinal 

dynamics. Various types of RF manipulation have been proposed, including the excitation of 

amplitude modulations at discrete frequencie$, and phase modulation excitation. Assorted 

noise distributions have been discussed, including wide band, narrow band, and a notched 

noise specuum637.8.9. 

All of the RF manipulation schemes have the same general arrangement. There is a 

crystal close to the beam at a position in the ring where the horizontal dispersion function qx 

is large. The betatron motion may be temporarily ignored, with some justification, if the 

horizontal beta function px is relatively small. A test proton in the RF bucket strikes the 

crystal if its synchrotron displacement is larger than the crystal displacement. Suppose that a 

particular proton just misses the crystal at the extreme displacement of one synchrotron 

oscillation, but has a large enough amplitude one synchrotron period later, at its next 

extremum, to strike the crystal. This proton is efficiently channeled and extracted if it hits 

sufficiently deep within the crystal. Ideally, all protons would enter the crystal at least ten 

times deeper than the accuracy with which the crystal surface can be polished. This results in 

the nominal (somewhat conservative) requirement that most protons should strike the end of 

the crystal with a displacement of more than 1 micron. 

Naively, then, a successful RF manipulation scheme must increase the synchrotron 

oscillation amplitude of a test proton near the crystal by at least 1 micron in one synchrotron 

period. All of the proposed schemes provide a mechanism by which appropriate test protons 

spiral outward with an increasing oscillation amplitude. This commonality makes it possible 

to include betatron oscillations in a realistic analysis, below, that is independent of the details 

of the excitation mechanism. Noise excitation is not discussed any further here - except in 

the context of the overlap of a small number of amplitude modulation resonances. Phase 

modulation is not discussed at all, in order to concentrate on discrete frequency amplitude 
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modulation schemes. These schemes keep the stable fixed point center of the RF bucket at a 

constant location, and are therefore much less prone to dilute the phase space density of the 

beam core than phase modulation schemes. 

Table 1 lists a set of nominal parameters that apply to a proposed test of crystal 

channeling extraction in the Tevatronlu, and a set corresponding to a rough conceptual design 

for the actual SSC extraction scheme. The nominal Tevatron numbers are used below in the 

evaluation of various quantities for the proposed test. However, it should be recognized that 

the actual conditions of crystal extraction could be quite different - especially in the SSC 

configuration, but also in a Tevatron test. 

Property units Tevatron test SSC concept 

Momentum, po TeVJc 0.9 20.0 

RMS ApIpo. 08 0.2 x 10-3 0.05 x 10-3 

Separatrix Ap/po. Gsep 0.6 x 10-3 0.25 x 10-3 

Dispersion, qx m 2.9 4.0 

Bucket width, t&p rtx tlllll 1.75 1.0 

Synchrotron tune, QsO 0.00089 0.00126 

Synchrotron period, Ts turns 1127 791 

Normalized emittance (1 a) pm 3.0 1.0 

Beta function, px m 98 1320 

Betatron size, ox tl-ltll 0.55 0.25 

Drive modulation depth, E 0.01 0.01 

Table 1 Nominal parameters at the crystal for a Tevaaon test of channeling extraction 

using RF voltage modulation, and for a preliminary conceptual SSC design. 

Unuerturbed motion 

The unperturbed longitudinal motion system is parametetized by two numbers - QsO, 

the small oscillation synchrotron tune, and &p = (Ap/p)sep, the value of the off- 

3 



momentum parameter at the separatrix of the RF bucket. For example, if QsO << I, the 

motion of the RF phase I$ in a storage ring is well approximated by 

d2Q ;i;z + (2~ Q&J2 sin($) = 0 1 

where time, t, is measured in units of accelerator turns. This is also the equation of motion 

of a pendulum. It is convenient to immediately write down a Hamiltonian that describes this 

motion, 

H = (2x Q&I) [ ;p” + (I- cos($) )I 2 

The canonical equations of motion of this system are 

4P aH 
dt = -z = - (2x QSO) sin($) 

d@ 
ai (2~ Qso) P 

3a 

3b 

After differentiating equation 3b with respect to time, and substituting the right hand side of 

3a for z, the equation of motion 1 is recovered. 

Pursuing the pendulum analogy, if $ represents the angle from the vertical, then p 

represents the (scaled) angular velocity. The separatrix of the system is drawn by tracing the 

curve H = 47tQsO corresponding to the energy of the “pendulum” at rest (p = 0) at its 

unstable equilibrium position (@ = n) . The largest values of p on the separaaix occur when 

the pendulum passes through vertical (0 = 0). giving lplmax = 2. This justifies identifying 

6 
p z I-- 

Ssep 
4 

as the normalized off-momentum parameter. If the angle I$ is always much smaller than 

unity, then the Hamiltonian can be written approximately as 

H = (~~Qso);[P~ + e21 

Since the value of the Hamiltonian is conserved along any single trajectory, the quantity in 

square brackets is also conserved, showing that a small amplitude trajectory describes a circle 

in the (p,@) phase space. 

It is convenient to introduce the oscillation amplitude a, where 

2 a2 = $ p2 + (1 - cos($)) 6 
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for small or large oscillations. Since the Hamiltonian given in equation 2 is simply 

proportional to the square of the amplitude, the amplitude is constant along a trajectory. The 

oscillation amplitude may also be defined in terms of the off-momentum parameter through 

bax a = - 
Ssep 

7 

where hmax is the largest off-momentum parameter encountered in a given trajectory. 

Normalization of the amplitude is such that it has a value of 1 at the separauix. 

Figure 1 plots the Poincure surface of secrion for the simulated longitudinal motion of 

protons in an RF bucket. Several protons with different amplitudes are launched, with one 

dot plotted per turn around an accelerator - the Poincare period. In this example the 

synchrotron tune is QsO = 0.0089, ten times the nominal Tevatron value, to make the 

discrete nature of the curves apparent. Motion is propagated by iterating a map of two 

successive difference equations, and not by integrating a differential equation. 

sr 
4 0.5 a 
2 0.0 
s g 4.5 
E 
E -1.0 

Figure 1. P&care surface of section for simulated longitu- 
dinal motion. Each dot represents one turn of a trajectory 
in the phase space of the RF phase and the off-momentum 
parameter. In order to show individual points, a synchrotron 
tune of ten times the nominal Tevatron value was used. 
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Change of tune with amplitude 

The shape of a aajectory is reasonably circular when a << 1, in which case the polar 

coordinates a and 0 shown in Figure 1 are natural. For small motion, then, 

$= L 

Q 
&ep 

= - a sin@) 8a 

and 
3 = a cos(8) 8b 

9 = 27tQst) t 9 

As the oscillation amplitude is increased, the trajectories become less circular, and the 

synchrotron tune Qs decreases. This detuning is calculated, to first order in a, by 

rewriting equation 3a after expanding sin(@) to cubic order. The right hand side then 

contains a linear part and a nonlinear perturbation Apnl, which is written for a finite time 

step At as 

~Qso Apnl = 3 @ 3 At 10 

This is ilIustrated in Figure 2. Since the corresponding nonlinear phase advance is 

cos(8) 
A&l = - 2a - Apnl 11 

then the perturbed tune is simply 

1 deni 
Qsb) = QSO + G ~7 > = Qso[l - ia2<cos4(e)>] 12 

where angle brackets signify an average over time. This gives 

Qs = QSO (1 -i a2 ) 13 

In the limit that the difference equations are well approximated by differential equations, 

Qso << 1, the motion can be solved exactly, to give the dependence of tune with amplitude 

as 

Qs = -= 

2K(a2) 
Qso(l -ia2- &a4 . ..) 14a 

14b 
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Figure 2. The effect of a momentum kick on the angular 
coordinate of the trajectory. 

-0 
% 0.4 

;I: 
g 0.2 

g 0.0 

--- I-a214-5a4164 

0 0.2 0.4 0.6 0.8 1 

amplitude a 

Figure 3. The variation of synchrotron tune with amplitude 
in the RF bucket. Various analytic approximations mentioned 
in the text are compared with simulation results. 
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where K(m) is the complete elliptical integral of the fist kind. Figure 3 compares how welI 

equations 13 and 14 agree with the variation of tune versus amplitude found by a simple 

simulation. Even the lowest order expansion is accurate up to surprisingly large amplitudes. 

SDiral motion due to amplitude modulation 

When the RF voltage is modulated to a small relative depth of E C-C 1 at a single tune 

Qn. the equation of motion 3a becomes explicitly time dependent 

!a? = 
dt - 21tQsO [l + E cos(2rQmt + a)] sin($) 15 

Here a is the phase of the modulation at time t = 0. In order to calculate the effect of this 

modulation at small amplitudes, the effect of the perturbation over a small time step At is 

again separated out. This gives, to first order in I$, 

Apm = --E 2~Qs0 cos(2@mt+ CZ) + At 16 

Assuming that the unperturbed motion is given by equation 8, the effect of this perturbation 

is to change the amplitude of the motion by 

APm Aa = -2 sm(0) 17 

= aa; QsO[sin(2rr(2Qs+Ql)t+a) + sin(2x(2Qs-Qm)t-a)]At 

where the base tune QsO in equation 9 has been replaced by the modified tune Qs. and 

trigonometric identities have been applied. The second term inside the square brackets is 

slowly varying if Qm = 2Qs, in which case the average rate of amplitude increase is 

da 
;il = - E a; QsO sin(a) 

for moderate times It I << 1 / I 2Qs - Qm I This causes the motion to be modified from a 

circle to a spiral, with a gain factor per synchrouon period of Ts turns of approximately 

Aa 
g e a = - e 5 sin(a) 19 

In other words, in one turn of the spiral (one synchrotron period) the amplitude increases by 

an amount of order the depth of the amplitude modulation. Using the nominal value for E 

recorded in Table 1, this increase is as large as 1.57% per period. 
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Resonance islands within the RF bucket 

Figure 4 illustrates how amplitude modulation creates two resonance islands inside the 

RF bucket. One dot is plotted in this figure per modulation period of 605 turns, which is 

now the Poincare period in which the difference equations repeat themselves exactly. Similar 

plots for different modulation phase a would show islands that have “rotated” inside the RF 

bucket. A proton responds resonantly to the amplitude modulation if its synchrotron tune 

Qs(a) is approximately half of Q m, the modulation tune. Stable fixed points at the center of 

the resonance islands are located at a resonance amplitude aR given by 

1 
Q&R) = 2 %I 

which is approximately solved by inverting equation 13 to give 

20 

aR 21 

for moderate amplitudes. Technically, there is a family of Mathieu resonances at amplitudes 

with synchroaon tunes equal to s Q,, where k is an integerll, but in practice only the k = 

1 fundamental resonance has significant saength. 

-1 0 1 

wphase 9R 

Figure 4. P&care surface of section for simulated longitudi- 
nal motion with amplitude modulation. The points are plot- 
ted every modulation period of 605 turns. The ratio Qm/Q,o 
is approximately 1.664, so that the center of the resonance is- 
land, where Q,,,/Q,(a) = 2, is located at an amplitude ,X = 0.5 
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Motion under the influence of RF voltage modulation, described by equations 3b and 

1.5, is summarized by the Hamiltonian 

H = (2nQso)[ip2+ (l+~cos(2xQmt+a))(l-cos(o))] 22 

It is useful to perform a canonical transformation to action angle variables, (J,yr), in order to 

conveniently describe the motion. Old and new coordinates are related by 

p = - (2 J)1’2 sin (v) 23a 

I$ = (2 J)1’2 cos (WI 23b 

The transformed Hamiltonian becomes 

H = (2rr.Qso)[J - $os4v+ &J~0~(2TCQmt+cr)c0~2~] 24 

Terms of order &J2, J4 and higher are dropped here, and in subsequent expressions. For 

small amplitudes close to the center of the RF bucket, the action J is a constant of the 

motion, while the angle w advances smoothly in time. That is, 

J = 2a2 25a 

w = 2nQsot 25b 

The isolated resonance Hamiltonian is derived by using equation 25b and the approximation 

Qm = 2 Qso, and averaging the motion over one modulation period. Only slowly varying 

terms survive the averaging process. After these manipulations, the time averaged 

Hamiltonian becomes 

J2 
H = WQso)CJ - 16 + “4’ COS(~\Y + 2nQmt + a) ] 26 

which has a surprisingly simple form. 

The description of proton behavior near the modulation islands becomes even simpler 

after a canonical transformation to the “slow” phase angle 

x = v-!$2KQmt+a) 27 

is made, and the Hamiltonian is expanded about the stable fixed point at the island center by 

using 
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J = JR + AJ 28 

where JR is called the resonant action. After making these transformations, dropping a 

higher order term proportional to E AJ, and arbitrarily adding a constant term, the resonance 

Hamiltonian becomes 

HR = ~QSO 1 
- -J-- [ 3 (A.J)2 + ~&JR (1 - COS(2x)) ] 

which is analogous to the pendulum Hamiltonian of equation 2 Reduction of the two first 

order canonical equations of motion (found by differentiation of HR) into a single second 

order differential equation shows that small amplitude motion close to the stable fixed point at 

(AJ,x) = (0,O) is described by 

x = Xmax co~(2nQ1 t) 30 

Here the island tune QI is given by 

A& = &2 T = (55) In 

is usually at least an order of magnitude smaller than the synchrotron tune. That is, a 

h 
v! 
0 
z 

CY 

2 

G 

5 
z .e 

l tune 

0 width . 
I.” 

2.5 

2.0 

1.5 

1.0 1 
0 ‘2 

0 o 00, 

0.4 w. 
EL 
g 

0.3 * 
E 
=¶ 

0.2 5. 

& 

0.1 ,k 
-a 

31 

o.o- 0.0 
0 0.2 0.4 0.6 0.8 1 

amplitude + 

Figure 5. Comparison of simulation results with analytic pre- 
dictions for the island tune and the island half width. Simula- 
tion results are shown as filled and open circles, for the island 
tune and for the half width, respectively. Analytic predictions 
are shown as straight lines. 

11 



proton under the influence of (even) a strong resonance moves from one side of the island to 

the other in a time that is long compared to the synchrotron period. The island size is 

parameter&d by the half width of the separatrix of the resonance, given by 

AJ51/2 = (8EJR)li2 32a 

Aa = ,112 32b 

These results are remarkably simple, especially when expressed in terms of the resonant 

amplitude. Their accuracy is confirmed by the results from simulation shown in Figure 5. 

The presence of the square root shows that even very small amplitude modulation 

perturbations have a significant effect. 

Three characteristic extraction times 

The stage is now set - at last - to derive some practically achievable parameters of a 

crystal channeling extraction scheme using RF amplitude modulation. Assume for now that 

protons are somehow injected into the low amplitude side of a drive island that is centered at 

a large amplitude near the crystal. (The viability and behavior of transport mechanisms that 

carry protons from near the core of the RF bucket out to the drive island are discussed 

below.) A good approximation to the total horizontal displacement of a proton is 

xtota1 = a8 cos(2nQxt + 98) + as [l + g Qst ] cos(2nQst) 33 

The gain factor g <<l is defined in equation 19. It varies only slightly in a few synchrotron 

periods, so it is often possible to treat it as a constant. Betanon oscillations are p-eterized 

by their amplitude and phase, ah and $8, and by Q x, the fractional part of the horizontal 

tune. In real space the synchrotron oscillation amplitude is given by 

as = alxssep 34 

where a typical value for as, using the nominal Tevatron values in Table 1 and putting a = 

0.85, is 1.5 millimeters. 

What is the typical depth, or step size, of the protons as they strike the crystal? How 

efficient is the process? Accurate quantitative answers to these questions necessarily rely on 

detailed numerical simulations, such as those summarized at the end of this paper. However, 

approximate answers and considerable insight are gained by describing the problem in terms 
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of three characteristic times the penetration time , the depletion time, and the rt?petitiofi time. 

All three times must be approximately equal in order for extraction to be efficient. This 

description is not limited to an amplitude modulation scheme, but is quite general - it holds 

for any channeling scheme whose RF perturbation strength is measured by a single parameter 

g, the spiral gain factor. 

The test protons of interest lie on a single circle of constant betatron amplitude ap, and 

are evenly distributed in betatron phase. This betatron circle just misses the edge of the 

crystal one synchrotron period before the time origin, at t = -Ts, so that the initial condition 

is 

wlystal = ag + as[l - g] 35 

For small times, itl << Ts, the total displacement of the proton relative to the crystal surface 

is well approximated by 

xtota1- xcrystal = ago [ cos(2lrQYt + $$) - 11 + as [ g + cos(21rQst) - l] 36 

This is illustrated in Figures 6a and 6b, which also show the two angles ys and vg that are 

referred to below. 

The possibility of a proton hitting the crystal first exists at the penerrarion time tP 

before the time origin, t = -tP, where 

rp = & = 
cos-1 (l-g) =0’/2 37 

27Qs 2xQs 
Using the value of E = 0.01 in Table 1, putting sin(a) = -1, and replacing Qs by QsO 

leads to a nominal penetration time of 32 turns. 

Whether or not a proton does in fact hit the crystal on a given turn depends on its 

betatron phase and on whether or not it has collided on a previous turn. The de&-don rime 

b characterizes the shortest number of turns necessary for all protons on the betaaon circle to 

hit the crystal, under conditions of optimum “mixing”. The phase distribution of protons 

rotates by a large angle, 2rcQx, on each additional turn from t = -tp to t = 0, while the 

width of the betatron phase angle bite increases in size, up to a maximum of 2vh In the 

naive approximation that all bites are of the maximum size, and that all are non-overlapping, 

then it takes LJ turns for all protons to be scraped, where 

2X x & = - = 
2w COYl(l -g a; ) 

38 
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Figure 6a. Superposition of synchrotron and betatron mo- 
tion one synchrotron period (t = -T.) before protons start to 
be scraped from the betatron circle. 

Figure 6b. Superposed motion just as the first protons begin 
to penetrate the extraction crystal (2 = -iP), and when the 
betatron circle maximally overlaps the crystal (t = 0). 
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If the proton has a small betatron amplitude, then the depletion time also becomes small, and 

the extraction efficiency is poor, since the typical penetration depth is proportional to the 

depletion time. In the exueme case, a zero amplitude proton has precisely one turn in which 

to gain enough momentum to jump deeply into the crystal. This is a severe requirement. 

Fortunately, the bi-Gaussian distribution of protons in betatron space has a maximum 

probability distribution at ag = ox, and is vanishingly small as the amplitude approaches 

zero. Since we desire to maximize the effects of the drive resonance for the most common 

betatron amplitudes, the crystal should be moved to about ox from the center of the 

modulation island. 

Qtystal = IlxSsepaR + ox 39 

Using the values of Table 1, and replacing ap by o x, the value of td becomes 11 turns. 

This value is a conservative underestimate, since most of the angular bites are significantly 

smaller than the maximum size - especially the early bites. It is therefore reasonable to expect 

the real depletion time to be well matched to the nominal penetration time. 

The third and final characteristic time is tr, the repezirion rime that characterizes the 

efficiency of the mixing on the betatron circle. This depends on Qu, the betatmn tune. For 

example, if & is exactly i, then every proton regains the same phase after only two turns, 

and only two bites will ever be taken out of the betatron circle. The protons that are 

incrementally nibbled from the widening edges of the bites do not penetrate deeply into the 

crystal. Fortunately, realistic betatron tunes are set to avoid low order resonances, where & 

= y with m and n mutually prime integers, in the interests of transverse beam stability. It 

is not possible to avoid all resonances, because the number line is dense in rational numbers, 

but it is possible to avoid resonances with denominators up to about 20, for example. The 

repetition time tr is simply that denominator, a number well matched to both the nominal 

penetration time and the nominal depletion time. 

The hits with the deepest penetrations - as deep as gas = 24 microns - occur when t = 

0 This is much larger than the required depth size of about 1 micron, demonstrating that 

amplitude modulation is a promising mechanism for crystal channeling extraction. In order 

for these depths to be attainable, the depletion time must be. roughly equal to the penetration 

time, td = tp, so that typical protons can survive long enough after the initial, less fortunate, 

protons have begun to strike the crystal. Even the long lived protons will not achieve their 

full potential depth unless the repetition time is comparable with the depletion time, tr = td . 
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Reauired drive island size 

A final condition must be met if protons with a reasonable range of betatron amplitudes 

are to bc successfully channeled: the full width of the drive island must be at least comparable 

to the betatron size of the beam. That is, it is necessary that 

2 QX Ssep Aall 2 ox 40 

Applying equation 32b, and using the nominal Tevatron parameters, the required drive 

modulation strength is 

E 2 c2 qz;se,)2 = 0.025 41 

This condition is not met by the nominal Tevatron test parameters in Table 1, so that crystal 

extraction will not be efficient for a broad range of betatron amplitudes. Protons with too 

small an amplitude will not hit the crystal at all, while protons with too large an amplitude 

will have a small spiral gain factor g, and thus a small step size. These effects may be 

mitigated, if one keeps the modulation strength E constant, either by decreasing the betatron 

beam size, or by enlarging the physical size of the RF bucket. This concern applies equally 

to all RF manipulation techniques to be tested in the Tevaaon. This problem is less serious 

in the SSC, where the requirement E 2 0.015 is more modest, and where there is much 

greater freedom to adjust the optical parameters at the crystal. 

Adiabatic trauuine - feed islands 

One way to transport protons from the outer edge of the core to the inner edge of the 

drive island is by carrying them infeed islands whose resonant amplitude slowly increases. 

This is accomplished by lowering the modulation tune Q m slowly enough, so that protons 

are adiabatically trapped in islands whose widths, et cetera, are still accurately given by the 

Hamiltonian expressions derived above. Loosely speaking, the condition for adiabaticity is 

that the distance the island moves in one island period is smaller than the island half-height. 

From rigorous Hamiltonian considerationst*, tt can be shown that a stable point at the center 
of a moving island exists only if 

I I dQm 
dt < 2x Qt2 = 5 E a2 Qs02 

When this condition is close to being an equality, the area around the stable point that is 

capable of successfully trapping protons is greatly reduced in size. 
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The adiabatic criterion is in good agreement with the numerical simulation tests 

summarized in Figures 7a through 7d, where the rate of change of modulation tune is 

systematically increased. Since the simulation used a = 0.5 and the nominal Tevauon 

values of Table 1, equation 42 predicts that 1.86 x 10m9 is the maximum value for which 

adiabatic trapping is possible. Several protons with different initial amplitudes are launched 

in each Figure, above and below the initial resonance amplitude. Protons that are 

adiabatically trapped are distinguished from their untrapped colleagues by the steady increase 

in their average amplitude, as the center of the feed island moves towards larger amplitudes. 

Note that a and QI increase as Q m decreases, so that the adiabatic criterion is less 

stringent at later times. 

ldhUll.9 

Figure 7. The response of protons to moving “feed” islands 
as the modulation tune ramp rate ldQ,/dtl is progressively 
reduced. For adiabatic trapping to occur, the rate of ramping 
must be less than 1.86. 10wg, according to theory. In each case 
the same five trajectories are followed, with initial conditions 
just below, inside, and above the nominal island position. 
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All of the protons tracked in Figure 7 show many oscillations at a frequency that 

gradually increases. For trapped particles this merely represents their motion around the 

moving island center. However, untrapped protons also have oscillations, at the beat tune 

between the modulation tune and their own synchrouon tunes. Untrapped proton oscillation 

amplitudes decrease as the feed island recedes, but still remain noticeable as the feed island 

approaches the drive island. Similarly, protons in the sacrosanct core of the beam also 

respond to RF voltage modulation with a small amplitude oscillation. This does not lead to 

emittance growth in the core so long as the modulation parameters are constant in time (as 

with the drive islands), or so long as they change adiabatically slowly (as with the feed 

islands). 

Adiabatically moving resonance islands offer a way to reliably transport large numbers 

of protons over large distances. In this sense it is (somewhat) analogous to the use of barges 

in the transportation of bulk raw materials. Unfortunately, the transport is slow - of order 10 

seconds in the Figure 7 simulation of Tevatron parameters. Therefore, if a single feed island 

is used to deliver protons in bulk directly to the drive islands, an undesirable pulsed time 

structure is imposed on the extracted beam. Fortunately, it is possible to introduce an 

intermediate uanspott mechanism between adiabatic islands and drive islands, that acts as a 

pulse stretcher to smooth out the extraction flux profile. 

Chaotic island overlap - useudo-diffusion 

Another voltage modulation transport mechanism uses resonances to create chaotic 

behavior in a limited range of amplitudes. This section quantitatively describes the creation 

of such chaotic bands by causing two or more resonances to overlap. Chaos transports 

protons in much the same way as a noise based scheme, by relying on the (superficially) 

diffusive random walk of the protons. In its favor, a chaotic transport process is faster than a 

noise based process, is more controllable, and is more localizable in phase space. A chaotic 

band can be used to transport particles all the way from the beam core to the drive resonance, 

or it can be used in conjunction with feed islands, as described above. 

If an area in phase space is “occupied” by two different resonance islands, then the 

description of the motion given above is inconsistent. In fact, the Chirikov criterion states 

(loosely speaking) that the overlap of resonance islands is sufficient to create a region of 

chaotic orbits in phase space. Assuming that two discrete amplitude modulation 
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perturbations of the same strength E are driven at nearly identical modulations tunes QI and 

Q2, then the islands overlap, and chaos ensues, if 

2Aal/2 > IaI-a2I = & (QI - 42) ) 

Comparison with equations 21 and 32b shows that the condition for chaotic overlap is simply 

IQl-421 < 2elnaQsO 

This condition is readily extended to a system of several resonance islands. 

Even in the presence of several discrete frequencies, the perturbation is deterministically 

described as the sum of sinusoids, so that the resulting chaotic motion is not true “noise” in 

the sense of being due to a random or unknown source. Nor is the chaotic motion truly 

diffusive, in the sense of phase space deviations evolving like the square root of time. In 

fact, a characteristic signature of chaotic motion is that two trajectories starting off 

infinitesimalIy close together in phase space diverge exponentiaUy as a function of time. The 

exponent describing this behavior is known as the Lyapunov exponent. Figures 8a and 8b 

illustrate this aspect of the motion, using results from a simulation of a chaotic band in the 

Tevauon from amplitudes of about 0.50 to 0.67, caused by nine overlapping resonance 

islands of strength E = 0.0007, much weaker than the nominal drive resonance strength. 

The amplitude of twelve neighboring protons is plotted versus time in Figure 8a, showing 

explosive divergence due to the chaotic nature of the motion. Figure 8b verities that the 

motion is indeed chaotic, by showing that the variance of the amplitude distribution grows 

exponentially over 8 orders of magnitude until the trajectories till the entire width of the 

chaotic band. This is in marked contrast to a white noise process, in which the variance of a 

distribution grows linearly in time. 

Figure 8 also shows that it takes at least five hundred thousand turns (500 synchrotron 

periods, 10 seconds in the Tevatron, 2.5 minutes in the SSC) for protons to move from the 

bottom of the chaotic band up to the top. A rough estimate for this transit time goes as 

follows. It takes about At = l/(241) turns to move from the bottom to the top of an 

individual island. Therefore the minimum time to propagate across the 9 island chaotic band 

is At = 9/(arQsOa l/2 ) = 575 Ts, in good agreement with the simulation. This time scale is 

appropriate for crystal extraction purposes, as it is much less than typical beam storage times 

of about a day. It is also large or comparable to the time it takes for islands to adiabatically 

move from the beam core to the drive islands, showing that a chaotic band may be used as a 

convenient pulse stretcher. Since the number of islands necessary to cause chaos across a 
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limits of chaotic band 

105 turns 

Figure 8a. The chaotic band created by the overlap of nine 
static islands is shown by following twelve trajectories with 
initial conditions that differ by 1 . lOwe in initial amplitude. 

lo-l50 2 I ., I .I. 4 8 I. 6 I.. 8 

16 tums 

Figure 8b. The variance of the amplitude of the twelve 
particles in the chaotic band as a function of time. The ap- 
proximately linear growth trend in the log-linear plot indi- 
cates exponential trajectory divergence that is characteristic 
of chaotic behavior. 
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given range of amplitudes is inversely proportional to ~1/2, the time for band crossing 

scales inversely with E, offering a convenient way to adjust the length of the pulse. 

A urototwical integrated extraction scheme 

It is interesting to envisage and simulate a plausible crystal extraction scheme that uses 

all three voltage modulation mechanisms described above. Figure 9 illustrates the response 

of a test particle to the scheme. A feed resonance is used to trap the proton at an amplitude of 

about a = 0.2, and then to adiabatically transport it for about 2 million turns (10 minutes 

in the SSC), until, at an amplitude of about a = 0.50, it enters a chaotic band made up of 

five overlapping resonances. The proton then takes about another 0.5 million turns to 

“diffuse” across to the outside of the chaotic band, at about a = 0.64, where the chaotic 

band touches the drive resonance. 

0.8 (d 

% 0.6 
3 
3 
a 0.4 

u 
0.2 

t ,,,I I1III I *,,, I II,, 111111 I,,, -1 

O*O 0 1 2 3 4 5 6 
106 turns 

Figure 9. A single trajectory is followed for a system excited 
by seven discrete amplitude modulation sinusoids. The tune 
of one of the sinusoids is ramped to provide a moving “feed” 
island. Five more are static, and create resonance islands that 
overlap to form a chaotic layer. The seventh perturbation is 
strong, and creates a “drive” island at a large amplitude. 
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The drive resonance is not destroyed if its width is much larger than the islands of the 

chaotic band - the small overlap merely creates a “hole” in the drive “bucket”. After entering 

the drive island, which extends up to an amplitude of about a = 0.78, the proton is rapidly 

accelerated into a crystal that is imagined to be placed at about a = 0.71 Since the crystal is 

not included in the simulation model, the proton is subsequently able to escape back into the 

chaotic band. The proton continues to re-enter and re-exit the drive resonance at irregular 

later times, showing that there is a considerable spread in the amount of time that protons take 

to get from the chaotic band into the crystal. Given the right parameters, the scheme will 

provide a slow, steady, spill. 

The motion of a single particle in Figure 9 indicates that the scheme has many of the 

desired characteristics for a crystal channeling extraction system. Figures 10a and lob show 

results from a more sophisticated simulation of the probable extraction efficiency, in which 

the disttibution of the penetration depth into the crystal is measured for a statistical 

distribution of many test protons. The phase space trajectory of each individual proton is 

followed, as it is injected at the low amplitude edge of the chaotic layer, diffuses up through 

the layer, is captured by the drive resonance, and finally is taken to large amplitudes where it 

hits the crystal. After each hit the penetration depth is recorded and a new proton is 

launched. The protons have random initial betaaon and synchrotron phases, and a Gaussian 

distribution of betatron amplitudes. The drive resonance is powered by a modulation of 

amplitude E = 0.02 at a tune of Qm = 0.86 Qsr~, and the five overlapping resonances are 

due to modulations of amplitude E = 0.002 at Qm/2Qsu = 0.905,0.915,0.925,0.935 and 

0.945 For the Tevatron case the fractional horizontal tune is taken to be 0.413, and the 

crystal edge is 1.8 mm off axis. The same tune is used for the SSC case, but the crystal 

edge is placed at 0.95 mm. All other relevant parameters can be found in Table 1. 

For the Tevauon experiment, Figure lOa, the maximum step size is over 8 microns, 

and the median step size is 2 microns. For the SFT extraction system at the SSC, Figure 

lob, the maximum step size is over 4.5 microns, and the median step size is about 1 micron. 

These numbers are acceptable in both cases, but are smaller than in the simple theoretical 

analysis given above for a variety of reasons. One of the most important effects is that the 

proton enters the drive resonance near its separatrix. The island tune is decreased in this 

region of the resonance, in the same way that large amplitude trajectories in the main RF 

bucket have tunes smaller than Qso . Thus the synchrotron amplitude growth rate is smaller 

than our estimate, which employed the small amplitude island tune. Also, the spread in 

betatron amplitudes gives a spread in synchrotron amplitudes at which the proton strikes the 
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Figure 10a. Distribution of the depth of proton penetrations, 
as predicted for the Tevatron crystal channeling extraction 
experiment, using the parameters mentioned in the text. 
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Figure lob. Depth of proton penetrations distribution on the 
crystal for the SFT fixed target B-physics experiment at the 
SSC, using preliminary parameters mentioned in the text. 
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crystal, again causing a degradation in the step size due to the synchrotron amplitude growth 

rate being smaller than the previous estimate. 

It should be noted that the parameters assumed for these simulations have not been well 

optimized. The fact that acceptable step size distributions are generated even by these 

preliminary calculations is encouraging, as the distributions can undoubtedly be improved. 

The simulations suggest that a good rule of thumb is that the median step size is an order of 

magnitude smaller than one would estimate from the quantity g as 

Conclusions 

The underlying behavior of a prototypical scheme based on amplitude modulation at a 

small number of discrete frequencies has been analyzed, and is quantitatively understood in 

terms of a relatively small number of well established accelerator physics concepts. 

Simulation tests of the quantitative descriptions of these concepts have all been successful. 

Three mechanisms have been identified as potentially relevant to a crystal channeling 

extraction system - drive extraction by strong stationary island, adiabatic transport by a feed 

island, and “diffusive” transport by chaotic overlap. The modulation frequencies involved in 

all of these mechanisms are low - of order 100 Hz. While the efficiency of all three 

mechanisms depends on accurate knowledge of the small amplitude synchrotron frequency 

Qso at the one per cent level, this is not hard to achieve in practice. 

A prototypical scheme that uses all three RF mechanisms has been demonstrated to 

work well, by theoretical analysis and by simulation. Typical step sizes of 5-10 microns are 

predicted, more than adequate for efficient channeling to occur. 

Three times that are characteristic of the extraction process need to be commensurate for 

efficient extraction. This is true for all RF manipulation extraction schemes (including noise- 

based schemes) which ultimately use spiral motion in longitudinal phase space. 

A minor demand is made on the horizontal betatron tune in the extraction scheme - it 

should not be set near any low order resonance. This is also desirable in practical collider 

operation for other reasons. Extraction schemes based on resonance excitation in horizontal 

phase space require the opposite condition. 
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Can bent crystal extraction for fixed target beauty physics be efficient, and be parasitic 

to collider operation of the SSC? The preliminary conclusion here, from the point of view of 

a paper study of longitudinal dynamics, is “yes”. 
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